Logarithmic Sobolev inequality for zero-range dynamics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Sobolev Inequality for Zero–Range Dynamics

We prove that the logarithmic-Sobolev constant for Zero-Range Processes in a box of diameter L grows as L2.

متن کامل

Logarithmic Sobolev Inequality for the Inhomogeneous Zero Range Process

The logarithmic Sobolev inequality is a spectral bound which provides much information about decay to equilibrium of the dynamics of a stochastic process. Consider a process governed by reversible dynamics described by a generator L, with semi-group Pt and an invariant measure μ. The Dirichlet form is defined as Dμ(f) = μ[f(−L)f ]. A logarithmic Sobolev inequality is a statement which says that...

متن کامل

Logarithmic Sobolev Inequality for Zero–Range Dynamics: Independence of the Number of Particles

We prove that the logarithmic-Sobolev constant for Zero-Range Processes in a box of diameter L may depend on L but not on the number of particles. This is a first, but relevant and quite technical step, in the proof that this logarithmic-Sobolev constant grows as L2, that will be presented in a forthcoming paper ([3]).

متن کامل

Logarithmic Sobolev inequality revisited

r é s u m é Nous donnons une nouvelle caractérisation de l’inégalité de Sobolev logarithmique. © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

متن کامل

Logarithmic Sobolev Trace Inequality

A logarithmic Sobolev trace inequality is derived. Bounds on the best constant for this inequality from above and below are investigated using the sharp Sobolev inequality and the sharp logarithmic Sobolev inequality. Logarithmic Sobolev inequalities capture the spirit of classical Sobolev inequalities with the logarithm function replacing powers, and they can be considered as limiting cases of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2005

ISSN: 0091-1798

DOI: 10.1214/009117905000000332